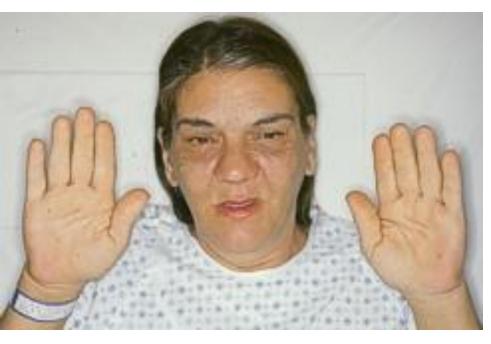

ENDOCRINE PROBLEMS

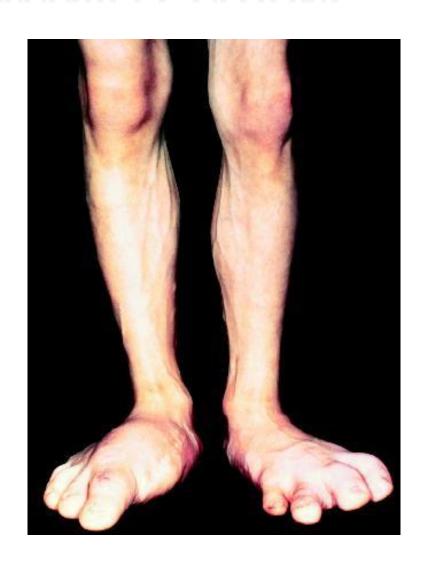
DISORDERS OF THE ANTERIOR PITUITARY

- **x** Growth hormone (GH)
 - + Promotes protein synthesis
 - Mobilizes glucose & free fatty acids
 - + Overproduction almost always caused by benign tumor (adenoma)



GIGANTISM

- In children excessive secretion of GH
- Occurs prior to closure of the epiphyses & long bones still capable of longitudinal growth
- Usually proportional
- May grow as tall as 8 ft& weigh >300 lb


ACROMEGALY

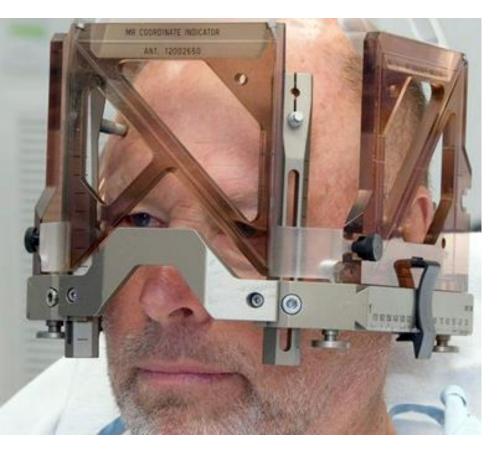
- In adults excessive secretion of GH stimulates IGF-1 (Liver).
 NO negative feedback with tumor.
- Overgrowth of bones & soft tissues
- Bones are unable to grow longer—instead grow thicker & wider
- ★ Rare—3 out of every million
- * M=F

CONTINUED CLINICAL MANIFESTATIONS

- Visual disturbances & HA from pressure of tumor
- * Hyperglycemia
- Predisposes to atherosclerosis
- Untreated causes angina, HTN, It ventricular hypertrophy, cardiomegaly

PROGRESSION OF ACROMEGALY





PROGRESSION OF ACROMEGALY

- Removal of tumor transsphenoidal approach
- Hypophysectomy—
 removal of entire gland
 with lifetime hormone
 replacement

Head frame for stereotactic radiosurgery

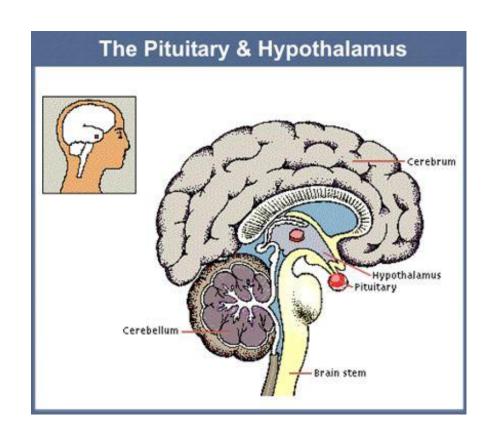
TREATMENTS

- Drug therapy
 - + Somatostatin analogs
 - × Octreotide (Sandostatin)—given SQ 2-3 x weekly
 - + Dopamine agonist
 - x Cabergoline (Dostinex)—tried first due to low cost, but not as effective
 - + GH receptor antagonists
 - × Pegvisomant (Somavert)—not for primary tx—does not act on tumor

TREATMENTS

Somatropin (Omnitrope)—GH for long-term replacement—given daily SQ @ HS

REVIEW QUESTION


- * A person suspected of having acromegaly has an elevated plasma GH Level. In acromegaly, one would also expect the person's diagnostic results to include:
 - + A. Hyperinsulinemia
 - + B. A plasma glucose of less than normal.
 - + C. Decreased GH levels with an oral glucose challenge test
 - + D. A serum somatomedin C (IGF-1) of higher than normal

ANSWER

x d. A nl response to GH secretion is stimulation of the liver to produce somatomedin C, or insulin-like growth factor-1 (IGF-1), which stimulates growth of bones & soft tissues. The increase levels of somatomedin C normally inhibit GH, but in acromegaly, the pituitary gland secretes GH despite elevated IGF-1 levels. When both GH & IGF-1 levels are increased, overproduction of GH is confirmed. GH also causes elevation of blood glucose, & normally GH levels fall during an oral glucose challenge but not in acromegaly.

HYPOFUNCTION OF PITUITARY GLAND

- * Hypopituitarism
 - + Rare disorder
 - + Decrease of one or more of the pituitary hormones
 - + Secreted by post pit:
 - × ADH, oxytocin
 - + Secreted by ant pit:
 - ACTH, TSH, folliclestimulating (FSH) luteinizing hormone (LH), GH & prolactin

ETIOLOGY & PATHOPHYSIOLOGY

- Causes of pituitary hypofunction
 - + Tumor (most common)
 - + Infections
 - + Autoimmune disorders
 - + Pituitary infarction (Sheehan syndrome)
 - + Destruction of pituitary gland (radiation, trauma, surgery)

Deficiencies can lead to end-organ failure

CLINICAL MANIFESTATIONS

* Tumor

+ Space- decrease peripheral vision or acuity, anosmia (loss of sense of smell), seizures

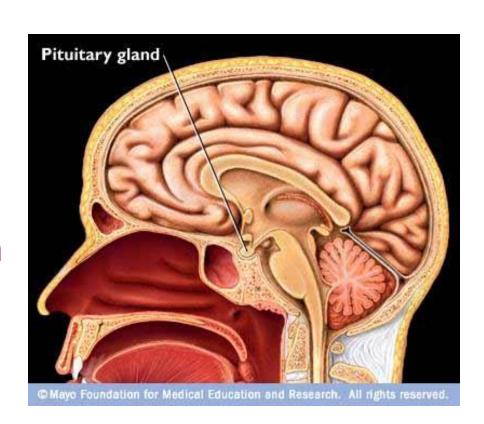
× GH deficiency

+ Decreased muscle mass, truncal obesity, flat affect

* FSH & LD deficiencies

+ Menstrual irregularities, dec libido, changes sex characteristics

× ACTH & cortisol deficiency


+ Fatigue, weakness, dry & pale skin, postural hypotension, fasting hypoglycemia, poor resistance to infection

Men with FSH & LD deficiencies

+ Testicular atrophy, dec spermatogenesis, loss of libido, impotence, dec facial hair & muscle mass

SYNDROME OF INAPPROPRIATE ANTIDIURETIC HORMONE (SIADH)

- Overproduction of ADH or arginine vasopressin (AVP)
- Synthesized in the hypothalamus
- Transported & stored in the posterior pituitary gland
- Major role is water balance & osmolarity

PATHOPHYSIOLOGY OF SIADH

★ Increased antidiuretic hormone (ADH)→

★ Increased water reabsorption in renal tubules →

★ Increased intravascular fluid volume →

Dilutional hyponatremia & decreased serum osmolality

SIADH

- ADH is released despite normal or low plasma osmolarity
- **x** S/S:
 - + Dilutional hyponatremia
 - + Fluid retention
 - + Hypochloremia
 - + NI renal function, <U/O
 - + Concentrated urine
 - + Serum hypoosmolality

 S/S: cerebral edema, lethargy, confusion, seizures, coma

CAUSES OF SIADH

- Malignant Tumors
 - + Sm cell lung CA
 - + Prostate, colorectal, thymus CA
 - + Pancreatic CA
- **×** CNS Disorders
 - + Brain tumors
 - + Lupus
 - + Infections: meningitis
 - + Head injury: skull fx, subdual hematoma

- * Misc conditions
 - + HIV
 - + Lung infection
 - + hypothyroidism
- Drug therapy
 - + Oxytocin
 - + Thiazide diuretics
 - + SSRIs
 - + Tricyclic antidepressants
 - + opioids

DIAGNOSTIC STUDIES & TREATMENT

- Simultaneous measurements of urine and serum osmolality
- **x** Na <134 mEq/L
- Urine specific gravity > 1.005
- Serum osmolality < 280 m0sm/kg (280 mmol/kg)</p>

x Treatment

- + Treat underlying cause
- + Restore nl fluid volume & osmolality
- + Restrict fluids to 800-1000cc/day if Na >125 mEq/L & Lasix
- + Serum Na <120 mEq/L, seizures can occur, tx with hypertonic Na+ solution (3%-5%) slowly

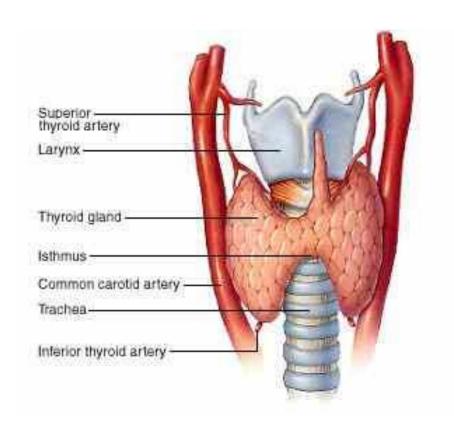
DIABETES INSIPIDUS (DI)

- Deficiency of production or secretion of ADH OR a decreased renal response to AHD
- Results in fluid & electrolyte imbalances

- * Types of DI
 - + Central DI (neurogenic DI)
 - + Nephrogenic DI

PATHOPHYSIOLOGY OF DI

× Decreased ADH→


★ Decrease water absorption in renal tubules →

★ Decreased intravascular fluid volume →

Excessive urine output resulting in increased serum osmolality (hypernatremia)

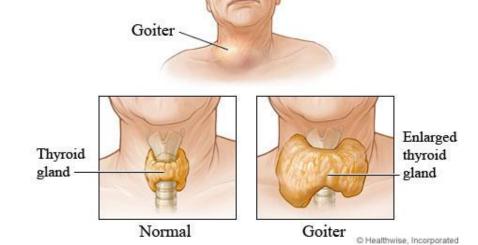
THYROID GLAND DISORDERS

Thyroid hormones (T3 & T 4) regulate energy metabolism and growth and development

THYROID ENLARGEMENT

- Goiter—hypertrophy & enlargement of thyroid gland
- Caused by excess TSH stimulation
- Can be caused by inadequate circulating thyroid hormones

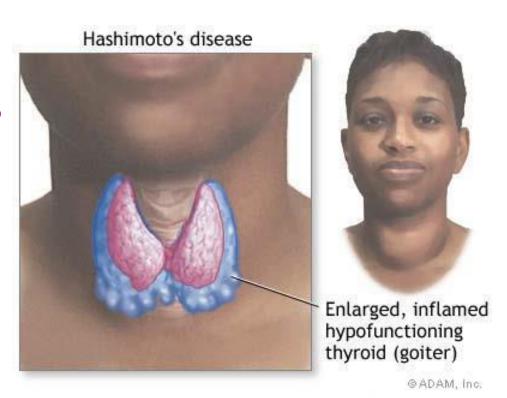
THYROID ENLARGEMENT


- Found in pts with Graves' disease
- Persons that live in a iodine-deficient area (endemic goiter)

Surgery is used to remove large goiters

ENLARGEMENT OF THE THYROID GLAND

- * TSH & T4 levels are used to determine if goiter is associated with hyper-/hypo- or normal thyroid function
- Check thyroid antibodies to assess for thyroiditis


TREATMENT OF NODULES

- * US
- × CT
- × MRI
- Fine-needle aspiration (FNA)—one of the most effective methods to identify malignancy
- Serum calcitonin (increased levels associated with CA)

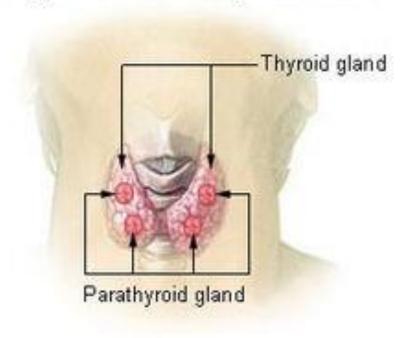
THYROIDITIS

- Inflammation of thyroid
- Chronic autoimmune thyroiditis (Hashimoto's disease)—nl tissue replaced by lymphocytes & fibrous tissue
- * Causes
 - + Viral
 - + Infection bacterial
 - + Fungal infection

DX STUDIES & MANAGEMENT OF THYROIDITIS

x Dx studies

- + T3 & T4 initially elevated and then may become depressed
- + TSH levels are low and then elevated
- + TSH high & dec hormone levels in Hashimoto's thyroiditis


TREATMENT OF THYROIDITIS

- Recovery may take weeks or months
- Antibiotics or surgical drainage
- ASA or NSAIDS—if doesn't respond in 50 hours, steriods as used
- Propranolol (Inderal) or atenolol (Tenormin) for elevated heart rates

More susceptible to
 Addison's disease,
 pernicious anemia,
 Graves' disease, gonadal failure

HYPERTHYROIDISM

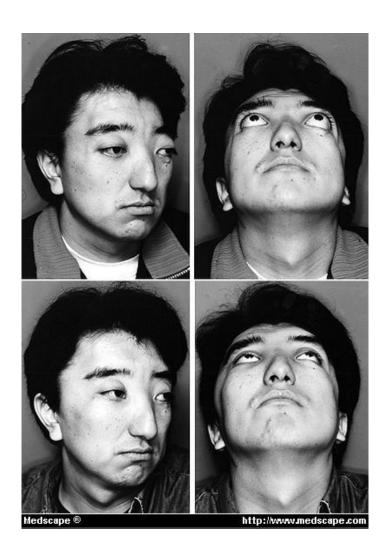
Thyroid and Parathyroid Glands

- * Hyperactivity of the thyroid gland with sustained increased in synthesis & release of thyroid hormones
- * M>W
- Peaks in persons 20-40 yrs old
- Most common type is Graves' disease

GRAVES' DISEASE

- * Autoimmune disease
- **×** Unknown etiology
- Excessive thyroid secretion & thyroid enlargement
- Precipitating factors: stressful life events, infection, insufficient iodine supply

- Remissions & exacerbations
- May progress to destruction of thyroid tissue
- x 75% of all hyperthyroidism cases
- Pt has antibodies to TSH receptor


TOXIC NODULAR GOITERS

- ★ Function independent of TSH stimulation
- * Toxic if associated with hyperthyroidism
- Multinodular goiter or solitary autonomous nodule
- Benign follicular adenomas

- × M=W
- ★ Seen peak >40 yr of age
- Nodules >3 cm may result in clinical disease

CLINICAL MANIFESTATIONS

- **×** Bruit present
- Ophthalmopathy—abnleye appearance or function
- Exophthalmos protrusion of eyeballs from orbits—20-40 % of pts
- Usually bil, but unilateral or asymmetric

CLINICAL MANIFESTATIONS

- * Weight loss
- × Apathy
- * Depression
- * Atrial fibrillations
- **x** Confusion
- * Increased nervousness

DIAGNOSTIC STUDIES

- * TSH—decreased
- Elevated free T4 (free is the form of hormone that is biologically active)
- RAIU (radioactive iodine uptake) test—Graves' uptake 35-95%; thyroiditis uptake < 2%)</p>

- * ECG
- Ophthalmologic examination
- **x** TRH stimulation tests

COLLABORATIVE CARE

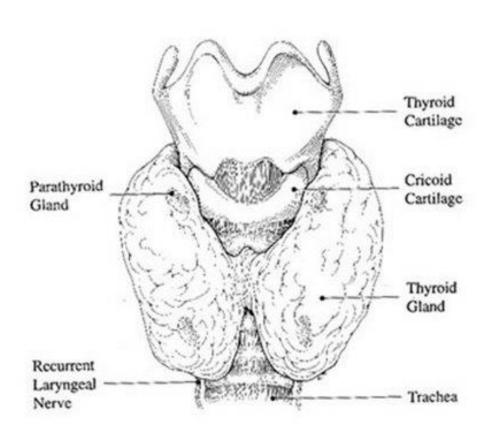
- Goal: block adverse effects of hormones & stop oversecretion
- Iodine: used with other drugs to prepare for OR or tx of crisis—1-2 wks max effect
- **×** Antithyroid drugs:
 - + Propylthiouracil (PTU)— has to be taken TID
 - + Methimazole (Tapazole)

- Total or subtotal thyroidectomy
- **★** B-adrenergic blockers—
 symptomatic relief
 - + Propranolol (Inderal)
 - + Atenolol (Tenormin)—used in pts with heart disease or asthma

COLLABORATIVE CARE

- * Radioactive Iodine Therapy—treatment of choice for non-pregnant women; damages or destroys thyroid tissues; max effect seen in 2-3 months; post hypothyroidism seen in 80% of patients
- **×** Nutritional therapy:
 - + High-calories: 4000-5000 kcal/day
 - + Six meals a day
 - + Snacks high in carbs, protein
 - + Particularly Vit A, B6, C & thiamine
 - + Avoid caffeine, high-fiber, highly seasoned foods


HYPOTHYROIDISM


- Common medical disorder in US
- Insufficient circulating thyroid hormone
- Primary—related to destruction of thyroid tissue or defective hormone synthesis
- Can be transient

- Secondary—related to pituitary disease or hypothalamic dysfunction
- Most common cause iodine deficiency or atrophy thyroid gland (in US)
- May results from tx of hyperthyroidism
- Cretinism hypothyroidism in infancy

HYPOTHYROIDISM

- Cretinism—hypothyroidism that develops in infancy
- All newborns are screened at birth for hypothyroidism

- S/S vary on severity of deficiency, age onset, patient's age
- Nonspecific slowing of body processes
- S/S occur over months or years
- x Long-termed effects more pronounced in neurologic, GI, cardiovascular, reproductive & hematologic sytems

- **×** Fatigue
- Lethargy
- * Somnolence
- **×** Decreased initiative
- * Slowed speech
- **×** Depressed appearance
- Increased sleeping
- × Anemia

- Decreased cardiac output
- Decreased cardiac contractility
- **x** Bruise easily
- **x** Constipation
- Cold intolerance
- * Hair loss
- * Dry, course skin

- Weight gain
- * Brittle nails
- Muscle weakness & swelling
- * Hoarseness
- * Menorrhagia
- Myxedema—occurs with long-standing hypothyroidism

- * Puffiness
- × Periorbital edema
- **×** Masklike effect
- **x** Coarse, sparse hair
- **x** Dull, puffy skin
- * Prominent tongue

MORE MYXEDEMA

COMPLICATIONS OF HYPOTHYROIDISM

- * Myxedema coma:
 - + Medical emergency
 - + Mental drowsiness, lethargy & sluggishness may progress to a grossly impaired LOC
 - + Hypotension
 - + Hypoventilation
 - + Subnormal temperature

TESTING & TREATMENT

- * Serum TSH is high
- × Free T4
- * Hx & physical
- Cholesterol (elevated)
- Triglycerides (elevated)
- **x** CBC (anemia)
- **x** CK (increased)

- Levothyroxin (Synthroid)
 - + Levels are checked in 4-6 wks and dosage adjusted
 - + Take meds regularly
 - + Lifelong treatment
 - + Monitor pts with CAD
 - + Monitor HR & report to HCP > 100 bpm
 - + Promptly report chest pain, weight loss, insomnia, nervousness

EXPECTED OUTCOMES

- Adhere to lifelong therapy
- * Have relief from symptoms
- Maintain an euthyroid state as evidenced by nl TSH levels

DISORDERS OF THE ADRENAL CORTEX

- Main classifications of adrenal cortex steriod hormones:
 - + Mineralocorticoid
 - × Regulates K+ & sodium balance
 - + Androgen
 - × Contribute to growth & development in males/females & sexual activity in adult women
 - + Glucocorticoid
 - × Cortisol is primary one
 - × regulate metabolism, increase glu levels, critical in physiologic stress response

CUSHING SYNDROME

- Caused by excess of corticosteriods, more specifically: glucocorticoids
- Hyperfunction of adrenal cortex
- * Women>Men
- × 20-40 yrs age group

* Other causes:

- + ACTH-secreting pituitary tumor (Cushing's disease)
- Cortisol-secreting neoplasm in adrenal cortex
- Prolonged high doses of corticosteriods
- + CA of lungs or malignant growth

CLINICAL MANIFESTATIONS OF CUSHING

- * Thin, fragile skin
- * Poor wound healing
- * Acne—red cheeks
- * Purplish red striae
- * Bruises
- Fat deposits on back of neck & shoulders (buffalo hump)

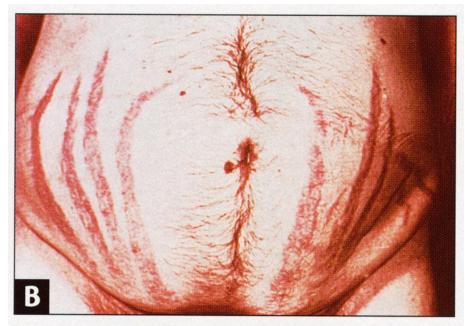
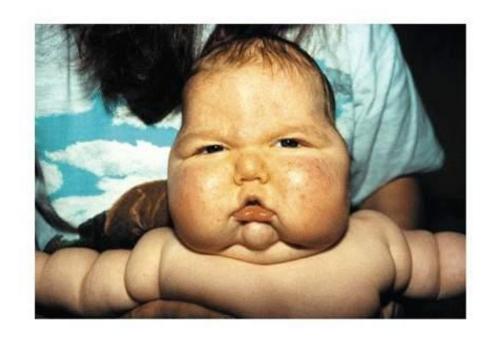


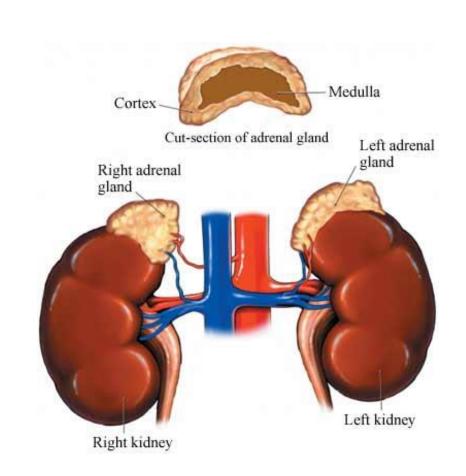
Figure 4-18B, Page 4.10


CLINICAL MANIFESTATIONS OF CUSHING

- Thin extremities with muscle atrophy
- × Pendulous abd
- Ecchymosis—easy bruising
- * Weight gain
- Increased body & facial hair
- **×** Supraclavicular fat pads

CLINICAL MANIFESTATIONS OF CUSHING

- Rounding of face (moon face)
- HTN, edema of extremities
- Inhibition of immune response
- Sodium/water retention
- ★ This infant had a 3 pound weight gain in 1 day → →


DIAGNOSTIC STUDIES FOR CUSHING

- × 24-hr urine for free cortisol (50-100 mcg/day)
- Plasma cortisol levels may be elevated
- * High-dose dexamethasone suppression test (falsepositive results with depression, acute stress, active alcoholics)

- * CBC—leukocytosis
- * CMP—hyperglycemia, hypokalemia
- * Hypercalciuria
- Plasma ACTH level
- History and physical

TREATMENT OF CUSHING SYNDROME

- Adrenalectomy (open or laparoscopic)
- If caused by steriod tx, taper & discontinue
- **x** Drug therapy:
 - + Metyropone
 - + Mitotane (Lysodren)— "medical adrenalectomy"
 - + Ketoconazole (Nizoral)
 - + Aminoglutethimide (Cytadren)

HYPOFUNCTION OF ADRENAL CORTEX— ADDISON'S DISEASE

- All 3 classes of adrenal corticosteriods are reduced
- Most common cause is autoimmune response
- Other causes: AIDS, metastatic cancer, TB, infarction, fungal infections
- ★ M=W (JFK had Addison's)
- ★ Occurs in <60 yrs of age</p>

CLINICAL MANIFESTATIONS OF ADDISON'S

- Bronzed or smoky hyperpigmentation of face, neck, hands (esp creases), buccal membranes, nipples, genitalia
- * Anemia, lymphocytosis
- Depression
- * Delusions

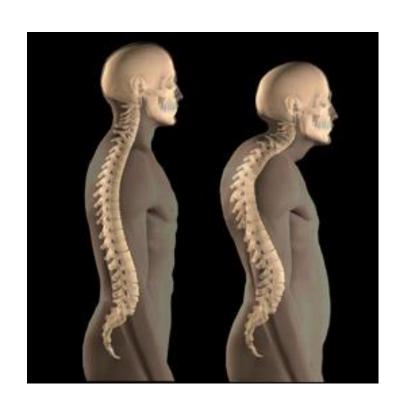
CLINICAL MANIFESTATIONS OF ADDISON'S

- **×** Fatigability
- Tendency toward coexisting autoimmune diseases
- ★ N/V/D, abd pain
- **x** Hypotension
- **×** Vasodilation
- Weight loss
- Hyponatremia, dehydration

DIAGNOSTIC STUDIES & TREATMENT

- * CT scan
- × MRI
- **×** ACTH-stimulations test
- History & physical
- Plasma cortisol levels
- Serum electrolytes
- * CBC
- We Urine for free cortisol (will be low)

- * Q day glucocorticoid (hydrocortisone) replacement (2/3 upon awakening & 1/3 in evening)
- Salt additives for excess heat or humidity
- Daily mineralocorticoid in the am
- Increased doses or cortisol for stress situations (OR, hospitalizations)


SIDE EFFECTS OF CORTICOSTEROIDS

- * Hypocalcemia R/T antivitamin D effect
- Weakness & skeletal muscle atrophy
- Predisposition to peptic ulcer disease (PUD)
- * Hypokalemia
- Mood & behavior changes

- * Predisposes to DM
- Delayed healing
- ★ HTN→predisposes to heart failure
- Protein depletion predisposes to pathologic fx esp compression fx of vertebrae

COMPLICATIONS OF STERIOD THERAPY

- Steriods taken for longer than 1 week will suppress adrenal production
- Always wean steriods, do not abruptly stop
- Take early in the am with food

